
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP013732
TITLE: Computing with Radial Basic Functions the Beatson-Light Way!

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Algorithms For Approximation IV. Proceedings of the 2001
International Symposium

To order the complete compilation report, use: ADA412833

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP013708 thru ADP013761

UNCLASSIFIED

Computing with radial basic functions the
Beatson-Light way!

Will Light

Department of Mathematics and Computer Science, University of Leicester, UK.
pwlmcs .le. ac. uk

Abstract
In this paper we discuss a number of recent developments in the practice of how to
compute with radial basic functions. The two main problems addressed are how to develop
fast evaluation schemes for radial basic functions, and how to efficiently carry out the
solution of the interpolation problem. The approach is to mainly describe work which
has involved the author and Professor Rick Beatson as contributors, and to include an
idiosyncratic selection of works by other researchers which have attracted the attention
of the author.

1 Introduction
Research into radial basic functions has been active now for about 30 years. The basic
setup is as follows. A function V) : R' -* R, which we refer to as the basic function, is
specified. A subspace is then constructed by reference to points x I..., X, in IRI. The
members of this subspace all have the form

m

8 (X)=Za,4(x - x), xCIE"

where the a,,... , am are real numbers. It is important to appreciate at the outset that
throughout this paper, and indeed in most of the papers appearing in this area, the un-
derlying assumption is that the points xl,. . . , Xm are distinct. One of the most common
tasks for which these functions are used is interpolation. A small amount of research
has been carried out where the points at which an interpolant is developed are arbitrary
distinct points in]R', but by far the majority of the work relates to interpolation which
is carried out at the same points as those used to effect the translation. Accordingly,
data dl .. . , d,, are given at x 1 ... , xmI and we require that

m

dj = s(xj) = •-• ai(xj - xi), j = 1,... ,m. (1.1)
i=1

Two immediate observations present themselves. Firstly, at the present level of generality
there is absolutely no guarantee that the Equations (1.1) will have a unique solution.
Secondly, one knows from the work of Mairhuber [14] that, there are no Haar subspaces

220

Computing with radial basic functions 221

of significant dimension in any space WR for n> 2. What this means is that if we are to
construct interpolation problems which have a unique solution for each location of the
data points xj,...., x. and for each choice of the data d...., din, then the subspace used
must vary as the interpolation points vary. If we pause for a moment and consider how we
might in some sensible and orderly way vary the subspace as the points xj,... , xm vary,
then using simple shifts of a single basic function 0b is one of the most natural choices.
It is very common to work with a function V which is a radial function. Thus we take a
function q : JR-+ JR and determine 0 by the rule O(x) = ¢(Ixl) for all x E JR'. Note
that throughout this account, the symbol I" I will stand for the Euclidean norm in R'.
At this point a common inaccuracy arises. The function O can be correctly referred to as
a radial basic function. However, many authors give this appellation to the function ¢,
whose radiality is of no consequence whatsoever, since it would imply that ¢ was simply
an even function on JR. Since 0 only acts on R+ the idea that q can be radial is vacuous.
Let us continue in this spirit of criticism a little while longer. As far as the author is
aware, only two people in the world would refer to * as a basic function, or a radial basic
function. All other authors would use the word basis in place of basic. There are very
obvious problems with this terminology. We are seeking to generate subspaces which are
suitable for interpolation. Such subspaces will naturally have the same dimension as the
number of data, and the functions {(- xi) : i = 1,..., m} should form a basis for
the subspace. The use of the word basis in two completely different senses seems to the
author to be misleading and unhelpful, whereas use of the word basic - a difference of
one character - eliminates any possibility of confusion, and avoids the use of the word
basis, which has a very specific mathematical meaning, in a context where its meaning
is not the usual mathematical one.

The problem about whether interpolation is possible has a highly satisfactory answer
in the work of Micchelli [15]. We direct the reader to the book of Cheney and Light [101
for a full account of these matters. A couple of examples will be helpful. If one chooses

m in

s(x) = ZaiO(x - xil) = Zaexp(-Ix - x1 2), x E]=n,
i--1 ir~l

or
in in

s(x)=E aj(x - xi1) =Eaix - xi, x G J ,
i--1 i-1

then the resulting interpolation problem is uniquely solvable for any choice of x,.... ,xm

and for any data d,,..., dm. This result contrasts very strongly with the case for poly-
nomial interpolation, where the data points x1, ... m X have to be constrained not to lie
on an algebraic surface of appropriate degree. Indeed, the alternative formulation of the
above result for the second example is quite often surprising to mathematicians who are
uninitiated in the theory of radial basic functions.

Theorem 1.1 Let x,... . ,xm be distinct points in R'. Then the matrix (Ixj - xl) is
invertible.

Having drawn a clear distinction between polynomial approximation and approxim-
ation by (radial) basic functions it is at this point that we must consider having some

222 Will Light

polynomial ingredients in our interpolant. This is done in a very standard way by a
process we call augmentation by polynomials. We consider interpolants of the form

s(x) = aj0(jx - xi) + p(x), (X E IR).
i~1

Here p is a polynomial of total degree at most k - 1. We still wish to interpolate to
m pieces of information, but now have more than m, parameters to determine with
this information. The remaining parameters are determined via the 'natural' boundary
conditions. The full set of equations is

m

dj = s(xj)=Zaj0(Ixj-XiD) j =1 ... ,m

0 = E-aiq(xi), for all q E 7rk- 1 (]R(').
i= 1

Here 7rk-l(]Rn) represents the space of polynomials of total degree k - 1 in RR. Two
questions present themselves pretty quickly from this additional hypothesis. Why should
polynomials be added to the interpolant, and why are the boundary conditions chosen in
this particular way? In some sense it is essential that we allow ourselves the possibility
of adding polynomial terms to some of the interpolants, as we shall soon see. The most
important example of a radial basic function interpolant which has a polynomial part
will be the thin-plate spline. We will make considerable reference to this interpolant in
R2, where it has the form

m

s(x) =ZEailx-xi, 2ln x-xil+ax+b, (x 112).
i=1

Note here that the parameter a is a vector with two entries, as is x. Thus ax stands
for the dot product between a and x. The parameter b is a real number. The natural
boundary conditions take the form

aj = aisi = aiti = 0,

where xi = (si, ti), i = 1, ... , m. This particular interpolant exhibits a feature common
to all the cases where augmentation by polynomials is either necessary or desirable:
the degree of the polynomial added is very low. The usual choices are k = 0 (when
no polynomial term is added), k = 1 (when the term is a constant polynomial) and
k = 2 (when the added polynomial is linear). It is now no longer possible to carry
out interpolation for all choices of the points x, ... , x,. One must avoid distributions
of these points which lie on a zero surface of the corresponding polynomial subspace.
In the explicit case we considered above (thin-plate splines), the very mild restriction
needed is that x1, , x, should not all lie on a single straight line. The theory developed
by Micchelli [15] includes the case of augmentation by polynomials.

We now propose to take a look at a very simple example which we hope will give the

Computing with radial basic functions 223

reader a feel for some of the ideas and concepts we have introduced so far. We consider

s(x) = ailx - xil I +b (x E IR).

Here the parameter b is a real number, and the natural boundary condition gives us

Ei- ai = 0. A unique feature of the univariate case is that we can order the interpolation
points X1 < x 2 < ... < Xm. Now consider the function s in one of the intervals [xi, x4iI1,
i = 1, . . . , m - 1. It is clear that in such an interval s is simply a linear function. The

demand that s interpolates the data at x1, ... , xm means that s must be the piecewise
linear interpolant to the data in the interval [xi, Xm]. What is the effect of the 'natural'
boundary conditions? In the interval [Xm, cc) we can write

s(x) ai(x - xi) + b =- axi +b.
i=1i1

Thus s is constant in [Xm, cc). A similar calculation reveals that s is constant in (-cc, x1].
Combining all these observations shows that s is the natural linear spline interpolant
to the data at xj,..., xm. This goes some way to explaining why the word 'natural' is
appended the boundary or extra conditions. But we can go a little further. It is well
known that the natural splines satisfy a variational principle. For the linear spline, if we
examine

XA {f E 3': f' E L2(]R)},

then
p00 10

(T,)2 f (f,)2

for all f E X which also interpolate the data. This variational principle is very useful in
developing error estimates, and we shall return to this general thread of ideas later in this
account. However, we ought to observe that S' is the space of tempered distributions,
and that the first derivative is to be taken in the distributional sense. There are ways
of getting round this distributional approach (see Cheney and Light [10] for an example
which corresponds closely to the discussion here), but it does give the most succinct de-

scription, and creates the technical background which will underpin all the theory which
has been developed in this area. Notice also that the quantity being minimised can be
used to specify a seminorm on X simply by taking the square root of the integral. This
seminorm has as kernel iro (R), which is precisely the polynomial subspace we use to aug-
ment the original radial basic function. Something very fundamental is happening here.
Most mathematicians would regard this seminorm as being a measure of smoothness
of the corresponding function. The natural linear spline therefore interpolates the data,
and is the smoothest interpolant to the data from X in the sense that it possesses the
smallest derivative in the L2-norm. If we are to pursue this very natural idea of making
higher derivatives of s small, then we will naturally develop seminorms with polynomial
kernels. This goes a long way towards explaining the need for augmentation.

Finally in this introduction, we want to discuss briefly the uses to which radial basic

224 Will Light

function interpolation is put. There are two significant feelings about interpolation by
these functions. Firstly, it is thought that radial basic function interpolation is very
good for treating scattered data. Loosely speaking, data is scattered when there is no
possibility of determining either a natural choice of coordinate axes, or an origin. It
is at the opposite end of the spectrum to gridded data. In the presence of a cartesian
product for the data sites, it is much more efficient to use univariate methods together
with tensor product constructions to do the interpolation. Secondly, radial basic function
interpolation is thought to be very good for dealing with high dimensional data. There is
some evidence from the realm of neural networks that this is indeed the case, but we will
not venture into the area of high dimensional data interpolation in this paper. Finally,
many of the data sets we want to treat have very large numbers of data sites and so our
aim is to develop methods which will handle 10,000 to 1,000,000 data sites or more.

2 Computational difficulties and fast evaluation
In this Section, we want to discuss the difficulties that arise when a large radial basic
function interpolation problem is posed. We shall also deal with one of the essential tools
for overcoming some of the difficulties. The system we want to solve has the form

m

dj = s(xj)=E aij(Ixj-xi!)+p(xj) (j=1,...,m) (2.1)
i= 1

0 = E aiq(xi), for all q 7rk-l(R'). (2.2)

If we declare a basis for Irk_1(IR') then we can write these equations in matrix form asA 0Q
Here the matrix A has entries O([xj - xiI) and is m x m. The matrix Q has entries
pt(xj), where Pl,... ,p, is a basis for rk-l(IR'), and is of size m x v. Recall from our
assumptions that only low degree polynomials are used, and so Q is a long thin matrix.
In the case of thin-plate splines in JR2 it would have size m x 3. However, A is a very
large matrix, with absolutely no sparsity. In fact, for thin-plate splines, the matrix A
is zero on the diagonal, and has large off-diagonal entries. In solving a large system of
linear equations, the only effective strategy is to use an iterative solver. Such a solver
will involve many multiplications of the matrix A with a vector a, and the full nature
of A makes this a very costly process. One of the key discoveries in this area was the
Beatson and Newsam [8] result which showed how fast multipole algorithms could be
applied to this area. If we consider the expression

m

s(xj) = ai xj - xi[2 ln(Jxj - xi[) + p(xj)

for some xj - R', then this can be considered as an evaluation of the function s at the
point xj, or the formation of an element in the matrix vector product Aa. Because of

Computing with radial basic functions 225

this, most authors tend only to consider how to evaluate the function s in an efficient way
- generating what are known as fast evaluation algorithms. It is impossible to estimate
properly the importance of this discovery. Anyone involved in programming iterative
solutions to the thin-plate. spline equations with tens of thousands of points would find
that any such algorithm would just grind itself into the dust without this technology. The
technology really has two aspects: a mathematical tool, and a programming structure.
Here we intend to give only the flavour of the argument. The reader who really wants to
know the details is advised to look either at the original paper [8], or the later paper of
Beatson and Light [5] which deals with polyharmonic splines. She can also look at two
papers which give clear explanations of simple cases. The first is found in a survey paper
by Beatson and Greengard [3]. The second is a technical report by Beatson, Levesley
and Light [7]. This last paper discusses fast evaluation methods on the circle and higher
dimensional spheres, and the reader will find a very careful and full account of the
one-dimensional circle case. The first trick with problems in R 2 is to consider complex
variables, rather than points in RR2 . Let z be a point at which we wish to evaluate s, and
u a data point, or centre. Then

Iz-u 2l1nIz-ul = TZ£(Iz-u12 1n(z -u)) = T$(lZ-u12 1nz) + 7,$(1z" uU2 In (i 1

Look at the last two expressions here. The first of them has the centre u in the square of
the modulus term, and this expression is quite cheap to evaluate, even if there are many
centres u. The effect of many centres on the second term is however quite profound, and
it is with this term that we must work. The idea is to set a tolerance, and only aim to
evaluate s to within this tolerance, rather than exactly. The appropriate series expansion
can then be used:

00 N N

Iz- uI2ln (1- E= A.p P EeP()p E fp(U)z-P.
p lp l p---1

The value of N depends on the tolerance demanded of the evaluation and the relative
sizes of u and z. For this reason, we think of z as far away from the origin in 1R2, and
u close to the origin. If there are now many centres ul,. . . , urn near the origin, and z is
far away from the origin, then we can summarise the effects of linear combinations of
all these centres as follows:

m m N

ailz - I (Za. f(ui)z-P
i=1 i=1 p=l

N m N

p _- l i= ! p= l

The principle now is to use the last expression above to make an approximate evaluation
of s. Of course, the assumption that z was far from the origin and ul, ... ,urn were
close to the origin is not important. It is simply important that z be far away from the
cluster of centres ul,... , urn. The summarising expression is referred to as a Laurent type
expansion, because it summarises the contribution of the centres ul,... , um in terms of

226 Will Light

FiG. 1. Fast evaluation panelling.

series involving negative powers of z. There is now a lot of preprocessing to go on before
the fast evaluation algorithm is ready to roll. Figure 1 shows how the algorithm proceeds.
The shaded square at the bottom left of the domain is the point which contains z, the
evaluation point. All the squares around this one which are the same size are deemed
to be 'close' to the evaluation square. All other squares are 'far away'. Of course, as the
squares get further away from z it becomes possible to use our summarising technique
to total up the contributions of larger and larger numbers of points. This is done in a
very explicit manner, which is represented by the shading in Figure 1. As we get further
away, we double the size of the squares over which we summarise, and there is a band of
same-size squares (or a ring, if the evaluation square was in the middle of the domain)
two squares wide surrounding the evaluation square. Once all the preprocessing is done,
and we shall discuss this a little more in a moment, all the needed coefficients gp are
available, and evaluation can be carried out in about 0(log m) FLOPS instead of 0(m).

The above account does not quite reveal the whole story. The coefficients gp are
calculated in an orderly manner which greatly improves the efficiency of the algorithm.
Suppose our problem is located in [0, 1]2. An initial decision is made to divide the
original domain into squares of size 2-'. There is then a parent child relationship derived
through a quad-tree data structure. The parent [0, 1]2 has four children: [0, 0.5]2, [0.5, 1]2,

[0, 0.5] x [0.5, 1] and [0.5, 1] x [0, 0.5]. This parent-child relationship helps in setting up
the coefficients gp(U ,..... un) in an efficient way. There is also a further idea involving

Computing with radial basic functions 227

Taylor series, which gives more efficiency. We omit any description of this technique.

3 Inverting the interpolation matrix

Recall as at the beginning of the previous section that the equations specifiying the
interpolation problem are as follows:

m

dj = s(xj)=Z ai¢(Ixj-xjI)+p(xj), (j =1,...,m) (3.1)
i=1

m

0 = E aiq(xi), for all q E 7rk-(]R1). (3.2)
i=1

In matrix terms we have

where A is a full matrix which tends to exhibit poor conditioning. The poor conditioning
of A is similar to problems experienced by researchers in the theory of finite elements
as the interpolation points become very dense in a given region, the conditioning gets
worse. In fact, there are formal statements relating some impression of the condition
number of A (usually the smallest eigenvalue of A) to the minimum interpoint distance.
The following table represents the condition number of A when the interpolation points
are given on a uniform 5 x 5 grid in [0, a]2 . Of course, on a philosophical level, it does not

Scale parameter Condition
a Number
1.0 3.6458 x 102
0.1 2.5179 x 104

0.01 2.4364 x 106

0.001 2.4349 x 108

TAB. 1 Two norm condition numbers of A.

make any sense whatsoever to describe an interpolation problem as being ill-conditioned.
Let's discuss this point in a little more depth. Suppose xj,. . . , xm are points in 1R=, and
Gj,..., Gm are a set of functions from]R' to R which are linearly independent over
{xj,... ,x,}. That is, interpolation to arbitrary data at xl,..., Xm by linear combina-
tions of G1,..., G,, is always uniquely possible. Then there is a basis F1 ... , Fm for the
linear span of G1, ... , G, 'such that F (xj) is 1 if i = j and is zero for all other values of
i, j between 1 and m. If the given data is di,.. . , din, then the interpolant can be written
down immediately as

m
•-•diFi x) (x W R).

228 Will Light

If one has in one's hands the basis {F 1,...,Fm} and wants to know the coefficients
which must be used then one need only invert the identity matrix to obtain the solution,
and there are not many matrices which are better conditioned than the identity matrix!
Of course, getting one's hands on the basis F1 , , F,, is usually rather difficult - as
hard as solving the original problem in fact. It has become traditional to refer to the
basis F1 ,.. . , Fm as the Lagrange basis (in sympathy with the fact that Lagrange was a
person who wrote down this basis for polynomial interpolation in one dimension) or the
cardinal basis. This last term seems to the author to be quite appropriate, indicating
that the basis is special. However, it does not find favour with spline theorists, since
they think of the word cardinal in a very technical sense (the interpolation points are
V'). Terminology aside, the point is still made that the conditioning of any interpolation

problem is a function of the available basis. A more practical case of this phenomenon
is the problem of natural cubic splines in]R. They fit into the radial basic function
interpolation scenario, because a natural cubic spline with knots at x,... x,x can be
written as

M
s(x) =Zaix-xi3+ax+b (x E R).

i=1

If we require this spline to interpolate data dl,..., d,. at xl, ... ,xm then we have to
require that s (xj) = dj for j = 1,. . . , m. The natural property comes, as expected, from
the natural boundary conditions:

ai aixi = 0.
j=1 i1

The ill-conditioning illustrated in Table 1 would be equally present in this example, and
the remark that the conditioning increases as the interpoint spacing decreases would also
hold good. Of course, to suggest the use of this basis to a spline practitioner would not
be a good idea! We are well used to the idea that B-splines are the correct basis to use
in this situation.

I suppose the two principles to emerge from the above discussion are that the basis
we have used thus far to describe the interpolation problem is not satisfactory from a
computational point of view, and that in at least some of the cases under discussion
(all of them one-dimensional) there are other bases which are superior. There are other
ways to conceptualise the difficulties we experience with the radial basic functions. Most
of them tend to grow at infinity, and have small value at zero. As a general principle,
we would like a basis to mimic the B-spline basis. That is, we would like the basis to
be local if possible - each basis function having a fairly small support around one of
the interpolation points. The first people to make progress in this area were Dyn and
Levin [11] in 1983. There is a later paper with Rippa [12] in 1986 which is also worth
looking at. Their technique was based on the observation that if F(x) = Jx12 In lxi, and
x E R2, then V4F = 87r6. Here, V4 represents the bilaplacian, and 5 is the Dirac delta,
distribution whose action on each rapidly decreasing function in S is to evaluate it at
zero. This description alone should alert us to the fact that V4F = 87r6 is a distributional
equation, and as such must be handled with care. However, numerical analysts dash in

Computing with radial basic functions 229

where others fear to tread, and we can approximate the Laplacian as follows:

(V 2F)(x) • h- 2{F(x-hel)+F(x+hel)+F(x-he2)+F(x+he2)-4F(x)} (x E R 2).

Here h is a real parameter, and el and e2 are the usual unit vectors in R2 . Pictorially, we
can represent this approximation by the stencil shown in Figure 2. The bilaplacian stencil

1 4 1

FiG. 2. The stencil for the Laplacian.

is shown in Figure 3. This observation is used in a straightforward way if the interpolation
points lie on a grid. Instead of using the thin-plate spline radial basic function to generate
a basis, one uses the appropriate linear combinations which represent the bilaplacian of
this function. Because one has a distributional equation relating this quantity to the 3
function, one does not expect to get the 3 function exactly, but one certainly does expect
to get a function which decays rapidly at cc, and this is exactly what happens. Dyn and
Levin provide some encouraging numerical results. Of course, there remains the problem
of what to do when the data is not gridded. Here one must develop first the appropriate
stencil for the Laplacian on a point by point basis. This may seem laborious, but in fact
the next few methods we will describe all compute better basis elements on a point by
point basis.

Perhaps the most successful class of schemes of this nature computing a new
basis on a point by point approach comes from Beatson, Goodsell and Powell [2] and
Beatson, Cherie and Mouat [1]. Their approach is perhaps simpler to appreciate and
implement than that of Dyn and Levin. They begin with the observations I made earlier
- what we are really after is the cardinal basis F 1, . . . , Fm with the property that F, (xj)
is 1 if i = j and is zero for all other values of i, j between 1 and m. However, because
this problem is as difficult to solve as the original one, we proceed as follows. Consider

230 Will Light

20 -8 92

1 -8 20 -8 1

29 -8 o2

1

FIG. 3. The stencil for the bilaplacian.

the job of trying to construct Fi. This function is supposed to be 1 at xi and zero at all
other points. Choose about 50 near neighbours of xi, say yj E {x 1 ,..., x,,}. This choice
must include xi. Then take

50

Fi(x) E= ajlx-yjI2lnIx-yjl+bx+c, (x ER 2).
j=l

We demand that
1 if yj=xi,

'Fi (j) = 0 otherwise,

and that the natural boundary conditions are also satisfied. Thus we are producing
approximate cardinal functions which have the value 1 at the required point, but are only
zero on about 50 neighbouring points. This suggestion is based on the fact, observed by
many workers, that such functions are often small elsewhere in the domain. We produce
some pictures to illustrate this. In the first (Figure 4), 289 points are spaced on a regular
grid in [0, 1]2. The approximate cardinal function is based on the 13 points shown in bold
in Figure 4. Figure 5 illustrates the same situation, but now as shown the points used to
develop the cardinal function are all clustered in one corner of the domain. The effect is
to produce significant values at the opposite corner of the domain. One can infer from
this that whenever the data is pretty much uniformly distributed, the cardinal functions
using points well inside the domain will have good properties, while those at the edge
will be poor. Similarly, in a non-uniform distribution, those interior to a cloud of points
will behave well, while those at cloud boundaries might not.

There are two methods for dealing with the difficulties which have shown up above.

Computing with radial basic functions 231

00.0.

0.ý0I

0.0

02 0

0.00

S.

FiG. 5. Approximate cardinal function with points atoeconera tof the domain.
Fisloecn.i2l h aria.ucin at.a.fixed set of jiously choenpont

: : : : : : : : : : : :0.2 0.2 ..

Fic. 5. Approximate cardinal function with pointsa n corner tof the domain.

-so that every cardinal function must have the value zero at these points. This is very
effective in the case of regularly spaced data as Figures 6 and 7 show. One can imagine
however, that a data set with a number of clouds might benefit from a judicious choice
of points at which to carry out the pinning. What one would really like is a method
which does not rely on any user intelligence in the choice of points. As mentioned before,
a desirable feature of a good basis function is one which decays at infinity. This decay
should be at some rate if possible. The Beatson, Cherie and Mouat prescription for thin-
plate splines in R2X is that the elements should decay like 1XK-3 as lxi --+ cc. There is a
problem here, in that if we opt for decay elements everywhere, then we will not obtain
a basis for our space. To get around this problem, we accept an element Fi as a decay
element if it satisfies

50
-...... ..-....1Io< p

232 Will Light

0020

00

-02

02 02

0 0

FiG. 7. Approximate pinned cardinal function with points atenetcrner tof the domain.

o °o , o.

...... ... a o..

...e4

.e e

thr r fewo bell adwhste needed o mk hsmto praeefcety u

04 06

0 0

we hope that sufficient detail is present for the reader to be able to see the general idea.
All the above methods are providing ways of constructing a better conditioned basis
with which to solve the problem. A method still has to be selected to invert the matrix
associated with the new basis, which is now much better conditioned than the original
matrix corresponding to the conventional basis. The method of choice for most authors
is some version of .MRES.

Beatson called the points at which decay could be obtained 'good' points, and points
at which decay could not be obtained 'bad' points. This idea has been built onl in a
recent technical report by Beatson and Levesley [4]. The general spirit is to define good
and bad points in the same way a~s Beatson, and then to develop an iterative solver,
solving first on the good, then the bad, then returning to the good and so on.

Computing with radial basic functions 233

Finally, a very successful method has recently emerged from the researches of Beatson,
Light and Billings [6]. This method has the advantage that it is a fast iterative solver
which may be regarded as a preconditioner in its own right (thus it may be combined
with a solver such as GMRES). We will describe it here as a solver. It is essentially
the domain decomposition method, although as with previous solvers, our description
will be very much at a 'bare bones' level, and the interested reader is referred to [6] for
the fine details, which include some error estimates, some interesting comments on an
alternative basis, and a good deal of theory. We shall describe the method as applied to
data on the unit square [0, 1]2 in 1R2 , and we will not make any attempt to make the
method adaptive in character. The reader will be able to see these improvements for
herself. We will test our method on randomly chosen data in [0, 1]2.

We begin with a set of nodes X = {x1,... ,Xm} at which interpolation is to be
carried out. We will describe the algorithm as it is implemented for solving the thin-
plate spline interpolation problem on the node set X. We divide up the square [0, 1]2

into a fairly large number of sub-domains X 1, ... , Xe. There are two constraints on these
subdomains. It is important that they are constructed so that about equal numbers of
points lie in each subdomain - about 50 points per subdomain is ideal. Secondly, it is
essential that each subdomain overlap all surrounding subdomains. In our terminology,
two subdomains overlap if they have a (small) number of points in common. In each
subdomain there are some points in X which lie only in that subdomain and not in any
other. We call these points the inner points of the subdomain. A coarse set Y of inner
points in the node set X is also chosen. We will say more about this coarse set in a
moment, but at this stage it simply consists of a small number of inner points from each
subdomain. The algorithm will then construct the interpolant s and proceeds as follows.
We initialise the interpolant s as s = 0. We want to solve the equations

m

dj = s(x) = ailxj - xil'1nxj - xil + OXj -'3, (j =1,...,m) (3.3)

subject to the boundary conditions

ai = aisi = aiti =0 (3.4)
i--1 i=1 j=1

where xi = (si, ti). In matrix form these equations are

as we have already seen. Our method will operate by residual correction, so we begin by
setting

It is important to recall that a is a vector of length 2, which we write as a = (a 1 , a 2).
Suppose now we have begun our iterative procedure and generated an approximation a
with a residual r. The next few steps describe how to update the approximation and the

234 Will Light

residual.

Step 1. We construct Sl,..., s, such that each sj is an interpolant based only on all
points of the subdomain Xj, using as data the residual vector r restricted to Xj.
Step 2. For each inner point x we now have a single real number ax which is the
coefficient of I . -x[2 In • -x[. If we look at the collection of coefficients belonging to all
the inner points of all domains, then this collection is not in general orthogonal to it 1 .
That is, they fail to satisfy boundary conditions of the type given in Equation (3.4). We
now correct so that the collection of coefficients corresponding to all inner points of all
domains is orthogonal to 7r1 .

Step 3. We set

S1 = E= a, -x1 2 In I -x[: x is an inner point}. (3.5)

Step 4. We evaluate the residual R7 = r-S 1 at the coarse grid points, and then construct
the interpolant S2 to this residual on the coarse grid points Y.
Step 5. We update s by s +- s + S1 + S2 . The new residual is then given by

r= (z

where
zi--=-di - s(xi), i =1,...,m .

This iterative process can either be continued to convergence, or used as a preconditioner
followed by GMRES. Table 2 shows some run times taken to obtain an error of less than
1 X 10-6 for the Franke 1 function (see [13] for the definition of this function). Random
nodes were generated in [0, 112 and an Intel Celeron PC was used. Recently,

Number Number of Time
of nodes iterations (seconds)

10,000 8 7.0
20,000 8 17.5
40,000 6 35.5
80,000 6 105.7

160,000 7 407.8

TAB. 2 Run times for domain decomposition.

the group at Leicester, using a twin processor Compaq PC, has obtained solutions to
a problem with 1,000,000 random points in less than 9 minutes, and we can safely say
that the combination of domain decomposition methods and multipole fast evaluation
has produced a robust and effective method. Most practitioners will be aware of other
ways to run a domain decomposition algorithm. In particular, one can use a nesting
approach where one starts with only four subdomains each containing large numbers
of points. To solve each subdomain problem, one subdivides again and does domain
decomposition in the subdomain.

Computing with radial basic functions 235

Bibliography
1. Beatson, R.K., J.B. Cherie and C.T. Mouat, Fast fitting of radial basis functions:

methods based on preconditioned GMRES iteration. Advances in Computational
Mathematics, 11 (1999), 253-270.

2. Beatson, R.K., G. Goodsell and M.J.D. Powell, On multigrid techniques for thin
plate spline interpolation in two dimensions, Lectures in Applied Mathematics 32
(1996), 77-97.

3. Beatson, R.K. and L. Greengard, A short course on fast multipole methods, in Wave-
lets, multilevel methods and elliptic PDEs, Ainsworth, M., J. Levesley, W.A. Light
and M. Marletta (eds), Oxford University Press, Oxford (1997), 1-38.

4. Beatson, R.K. and J. Levesley, Good point/bad point iterations for solving the
thin-plate spline interpolation equations, University of Leicester Technical Report,
2001/34 (2001).

5. Beatson, R.K. and W.A. Light, Fast evaluation of radial basis functions: Methods
for two-dimensional polyharmonic splines, IMA Journal of Numerical Analysis 17
(1997), 343-372.

6. Beatson, R.K., W.A. Light and S. Billings, Domain decomposition methods for solu-
tion of the radial basis function interpolation problem, SIAM Journal Scient. Stat.
Comp. 22(5) (2001), 1717-1740.

7. Beatson, R.K., J. Levesley and W.A. Light, Fast evaluation of radial basic functions
on spheres, preprint.

8. Beatson, R.K. and G.N. Newsam, Fast evaluation of radial basis functions I, Com-
puters and Mathematics with Applications, 24 (12) (1992), 7-19.

9. Beatson, R.K. and M.J.D. Powell, An iterative method for thin plate spline interpol-
ation that employs approximations to the Lagrange functions, in Numerical Analysis
1993, D.F. Griffiths and G.A. Watson (eds), Longmans, Harlow, 1994.

10. Cheney, E.W. and W.A. Light, A course in approximation theory, Brooks Cole,
Pacific Grove Ca, 1999.

11. Dyn, N. and D. Levin, Iterative solution of systems originating from integral equa-
tions and surface interpolation, SIAM J. Numer. Anal. 20 (1983), 377-390.

12. Dyn, N., D. Levin and S. Rippa, Numerical procedures for surface fitting of scattered
data by radial functions, SIAM Journal Scient. Comp. 7

13. Franke, R., Scattered data interpolation: Tests of some methods, Mathematics of
Computation 38 (1982), 181-200.

14. Mairhuber, J.C., On Haar's theorem concerning Chebychev approximation problems
having unique solution, Proc. Amer. Math. Soc. 7 (1956), 609-615.

15. Micchelli, C.M., Interpolation of scattered data: distance matrices and conditionally
positive definite functions, Constr. Approx. 2 (1986), 11-22.

16. Sibson, R. and G. Stone, Computation of thin-plate splines, SIAM Journal on
Scient. Stat. Comp. 12 (1991), 1304-1313.

